"Unconventional Artificial Lift Configurations and Deployment Methods"

SPE Applied Technology Workshop

13-14 March 2012 Amwaj Rotana Hotel, JBR Dubai, UAE

Heavy Oil Solutions Strategy

Aslan Mollaev

Heavy Oil Recovery Technologies

1. Thermal Methods

- SAGD
- Heat Resistant ESP
- Experience

2. Non-Thermal Methods

- PMM principles
- Low Speed PMM
- Drive to PC Pump

Challenges / Limitations:

- 1. High power demands for formation heating
- 2. High temperatures in down hole

Non-thermal Methods

Challenges / Limitations:

Rod pumps:

- pump setting depth limit
- rods overloading
- limited production range
- low rotation speed
- rotor to stator clearance changes due to temperature

SAGD Technology

Implies an application of a Heat Resistant Down Hole Equipment

Equipment Description

UHT Motor

Compound encapsulated winding

Special o-rings and gaskets

□ Synthetic oil

Special heat-resistant materials for current feed through shoe and thrust bearing

Equipment Description

- **Series:**
- 319 **744**
- **Temperature ratings:**
- Rated for:
- □Reservoir up to **395** ⁰F (200 ⁰C)
- □Winding up to **430** ⁰**F** (220 ⁰**C**)

Yagera field, Northern Russia

Wells5GS and 3GSProduction566 bpd and 786 bpdWater Cut80%Bubble Point66.85 PSI (4,7 bar)GOR56 scf/bbl (10 m3/m3)

Yagera field, Northern Russia

Dynamic Viscosity **14000 cP** At formation temperature

Yagera field, Northern Russia

Dynamic Viscosity **3600 cP** At 20 °C temperature

Yagera field, Northern Russia

Dynamic Viscosity 1 cP At 140-160 °C temperature

Motor N460AM35, 840V, SGL, CR2, <u>UHT</u>

Series	460
Power	35 HP
voltage	840 V
Current Heat resistance	25,5 A Compounding (operating temp up to 200 °C (395 F°)

Motor Seal N362P, LsBsL, CR2, HT, STL

Series	362
Configuration	LsBsL
Rubber technical parts	Aflas
Heat resistance	170 °C

Pump NFV600,SCMP,AR2,CR2,95stg

Series	362		
Production rate	680 BPD		
Head	1805 ft		
Amount of stages	95		
Туре	Semi-compression		K
	design		
Corrosion resistance	Stainless steel	Ŋ <u></u>	

Operation Results

Not a single case of NOVOMET equipment failure recorded

Average Runlife 350 days in High Sandy conditions

Well 5GS

Current Runlife 516 days still in operation

Down hole Temperature 160 °C

Non-Thermal Approach

LOW SPEED PERMANENT MAGNET MOTOR AS A BH DRIVE FOR PCP

Low Speed PMM Features

100-1000 rpm

High torque at Low speed

88-89 %

395 F

Cooling fluid velocity - twice as little

Low Speed PMM Features

How does it work?

Low Speed PMM Features

How is it controlled?

Low Speed PMM as a drive for PCP

Reduction Gear Significant Length LOW Efficiency

Low Speed PMM as a drive for PCP

Efficiency PM Motor **89%** AM Motor **26%**

 $L_{PMM} = 29 \text{ ft.}$ $L_{AM} = 85.5 \text{ ft.}$

Solution: application of low rpm PM Motor as a PCP drive

Overview

- 1. High Temperature ESP for Steam Flooding (200 C)
- 2. Successful Experience in **160** C. **516** days still in operation
- 3. PMM is a High Efficiency option for down hole drive of PCP
- 4. No Gear Box required
- 5. Has significantly higher Torque at low speeds due to Permanent Magnets
- 6. Can be run at any depth, set at perforations level and below
- 7. Up to ambient temperature of 395 F